Switching Voltage Regulators

IK1509-xx

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.23 V to $18 \mathrm{~V} \pm 3 \%$ max over line and load conditions
- Guaranteed 2A output load current
- Input voltage range up to 22 V
- Built-in Switching Transistor on chip
- Excellent line and load regulation specifications
- 150 kHz fixed frequency internal oscillator
- TTL shutdown capability
- Low power standby mode, IQ typically 80uA
- Thermal shutdown and current limit protection
- Bare chip is available

Applications

- Simple high-efficiency step-down regulator
- On-card switching regulators
- Positive to negative converter

Description

The IK1509 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down switching regulator, capable of driving a 2 A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 15 \mathrm{~V}, 12 \mathrm{~V}$ and an adjustable output version. Requiring a minimum number of external components, these regulators are simple to use.

The IK1509 series operates at a switching frequency of 150 kHz . Other features include a guaranteed $\pm 3 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically 80uA standby current. Self protection features include a two stage frequency reducing current limit for output switch and an over temperature shutdown for complete protection under fault conditions. The over temperature shutdown level is about $145^{\circ} \mathrm{C}$ with $5^{\circ} \mathrm{C}$ hysteresis.

Absolute Maximum Rating

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	Value	Unit
Maximum Input Supply Voltage	V_{I}	+30	V
ON/OFF Pin Input Voltage	$\mathrm{V}_{\text {IN }}$	$-0.3 \leq \mathrm{V} \leq \mathrm{V}_{\mathrm{I}}$	V
Feedback Pin Voltage	V_{FB}	$-0.3 \leq \mathrm{V} \leq \mathrm{V}_{\mathrm{I}}$	V
Output Voltage to Ground	$\mathrm{V}_{\text {OUT }}$	-1	V
Power Dissipation	P_{D}	Internally limited	W
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{J}	$-40 \leq \mathrm{T}_{\mathrm{J}} \leq+125$	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\text {JMAX }}$	150	${ }^{\circ} \mathrm{C}$
ESD Susceptibility (Human Body Model)	$\mathrm{V}_{\text {ESD }}$	2	kV
Operating Supply Voltage	V_{OP}	V	

Typical Aplication (Fixed Output Voltage Versions)

Pin Assignments

Pin Descriptions

Name	Description
$V_{\mathbb{N}}$	Operating voltage input
Output	Switching output
GND	Ground
FB	Output voltage feedback control
SD	ON/OFF Shutdown

Block Diagram

Electrical Characteristics

Unless otherwise specified, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version and $\mathrm{V}_{\mathbb{I N}}=18 \mathrm{~V}$ for the 12 V version. $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$.

Characteristic	Symbol	Test Condition		Min	Typ	Max	Unit
Output Voltage	$\mathrm{V}_{\text {OUT }}$	IK1509-3.3	$\begin{array}{r} 4.75 \mathrm{~V} \leq \mathrm{V} \operatorname{IN} \leq 22 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I} \text { LOAD } \leq 2 \mathrm{~A} \end{array}$	3.20	3.3	3.40	V
		IK1509-5	$\begin{gathered} 7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 22 \mathrm{~V}, \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A} \end{gathered}$	4.85	5.0	5.15	
		IK1509-12	$\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V}, \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A} \end{aligned}$	11.64	12.0	12.36	
Efficiency	η	IK1509-3.3	$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, \\ & I_{\text {LOAD }}=2 \mathrm{~A} \end{aligned}$		78		\%
		IK1509-5	$\begin{aligned} & V_{I N}=12 \mathrm{~V}, \\ & I_{\text {LOAD }}=2 \mathrm{~A} \end{aligned}$		83		
		IK1509-12	$\begin{aligned} & V_{I N}=15 \mathrm{~V}, \\ & I_{\text {LOAD }}=2 \mathrm{~A} \end{aligned}$		90		
		IK1509-ADJ	$\begin{aligned} & V_{I N}=12 \mathrm{~V}, \\ & I_{\text {LOAD }}=2 \mathrm{~A} \end{aligned}$		76		\%
Feedback Voltage	$V_{F B}$	IK1509-ADJ	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 22 \mathrm{~V}, \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {Load }} \leq 2 \mathrm{~A} \\ & \mathrm{~V}_{\text {out }} \text { programmed } \\ & \text { for } 3 \mathrm{~V} \end{aligned}$	1.20	1.230	1.26	V
Feedback Bias Current	$I_{\text {FB }}$	IK1509-ADJ; $\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$			-10	-50	nA
Oscillator Frequency	Fosc			127	150	173	kHz
Saturation Voltage	$\mathrm{V}_{\text {SAT }}$	$\begin{aligned} & \hline \mathrm{l}_{\text {OUT }}=2 \mathrm{~A} \\ & (\text { Note } 1,2) \end{aligned}$			1.10	1.3	V
Max Duty Cycle (ON)	DC	(Note 2)			100		\%
Max Duty Cycle (OFF)		(Note 3)			0		
Current Limit	$\mathrm{I}_{\text {CL }}$	Peak Current (Note 1,2)		2.4	3	3.7	A
Output Leakage Current	I_{L}	$\begin{aligned} & \text { Output = OV } \\ & \text { (Note 1,3) } \end{aligned}$				50	$\mu \mathrm{A}$
		Output $=-1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=22 \mathrm{~V}$			1	10	mA
Quiescent Current	I_{Q}	(Note 3)			5	10	mA
Standby Quiescent Current	$\mathrm{I}_{\text {STBY }}$	ON/OFF pin $=5 \mathrm{~V}(\mathrm{OFF}), \mathrm{V}_{\mathrm{IN}}=22 \mathrm{~V}$			80	150	$\mu \mathrm{A}$
ON/OFF Pin Logic Input Threshold Voltage	VIL	Low (Regulator ON)			1.3	0.6	V
	$\mathrm{V}_{1 \mathrm{H}}$	High (Regulator OFF)		2.0			
ON/OFF Pin Logic Input Current	I_{H}	$\mathrm{V}_{\text {LOGIC }}=2.5 \mathrm{~V}$ (regulator OFF)			5	15	$\mu \mathrm{A}$
	I_{L}	$\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}$ (regulator ON)				5	

Note 1: No elements connected to output pin.
Note 2: Feedback pin removed from output and connected to 0 V to force the output transistor switch ON. Note 3: Feedback pin removed from output and connected to 12 V for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and the ADJ version, and 15 V for the 12 V version. To force the output transistor switch OFF.

Typical Performance Characteristics

SWITCHING FREQUENCY

ON/OFF CURRENT

SHUTDOWN QUIESCENT CURRENT

OPERATING QUIESCENT CURRENT

SWITCH CURRENT LIMIT

Package Dimensions

SOP-8

D SUFFIX SOIC
 (MS - 012AA)

NOTES:

1. Dimensions A and B do not include mold flash or protrusion.
2. Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A ; for $\mathrm{B}-0.25 \mathrm{~mm}(0.010)$ per side.

| 8 |
| :--- |$|$| Dimension, mm | | |
| :---: | :---: | :---: |
| Symbol | MIN | |
| \mathbf{M} | MAX | |
| \mathbf{A} | 4.8 | 5 |
| \mathbf{B} | 3.8 | 4 |
| \mathbf{C} | 1.35 | 1.75 |
| \mathbf{D} | 0.33 | 0.51 |
| \mathbf{F} | 0.4 | 1.27 |
| \mathbf{G} | | 1.27 |
| \mathbf{H} | | 5.72 |
| \mathbf{J} | 0° | 8° |
| \mathbf{K} | 0.1 | 0.25 |
| \mathbf{M} | 0.19 | 0.25 |
| \mathbf{P} | 5.8 | 6.2 |
| \mathbf{R} | 0.25 | 0.5 |

